Le Ministère d’Education et de la Recherche
L’Université „Valahia“ Târgoviște
Faculté de Sciences Humaines

ANNALES
D’UNIVERSITÉ „VALAHIA“
TARGOVISTE

SECTION
d’Archéologie et d’Histoire

Tome VI-VII

Târgoviște
2004/2005
Collège de Rédaction

Rédacteur en chef:
Prof. univ. dr. Marin Cârciumaru

Rédacteurs responsables:
Prof. univ. dr. Mircea D. Matei
Prof. univ. dr. Ion Stanciu
Prof. univ. dr. Ion Calafeteanu
Prof. univ. dr. Constantin Preda
Lect. univ. dr. Dragomir Popovici

Secretaires de rédaction:
Lect. dr. Mircea Anghelinu
Lect. drd. Denis Câprăroiu
Lect. drd. Monica Mărgărit
Lect. drd. Iulian Oncescu
Lect. drd. Marian Cosac

Conseil de rédaction:
- Prof. Marcel Otte - Université de Liège
- Dr. Vasile Chirica - Institutul de Arheologie Iasi
- Prof. dr. Ilie Borziac - Institute of Archaeology of the Academy of Sciences Republica Moldova
- Prof. Jean-Philippe Rigaud - Université de Bordeaux I
- Prof. Arpad Ringer - University of Miskolc
- Dr. Alexandru Suceveanu - Institutul de Arheologie "Vasile Pârvan" Bucuresti
- Dr. Marie-Hélène Moncel - L’Institut de Paléontologie Humaine Paris
- Conf. dr. Alexandru Florin Platon - Universitatea "Al. I. Cuza" Iasi
- Conf. dr. Sabin Adrian Luca - Universitatea "Lucian Blaga" Sibiu
- Conf. dr. Karl Zeno Pinter - Universitatea "Lucian Blaga" Sibiu

Technorédacteur:
Florin Nițulescu
CUPRINS

Marin Cărciumaru, Marian Cosac, Elena Cristina Nițu - LES DATATIONS C-14 ET LA SUCCESSION CULTURELLE DU PALÉOLITHIQUE. ÉPIPALÉOLITHIQUE ET MÉSOLITHIQUE DE LA ROUMANIE / 7

Marian Cosac - L’APPARITION DU PALÉOLITHIQUE SUPÉRIEUR AU CENTRE ET À L’EST DE L’EUROPE - LES HYPOTHÈSES ACTUELLES / 45

Loredana Niță - TECHNOLOGICAL AND FUNCTIONAL OBSERVATIONS REGARDING BACKED IMPLEMENTS FROM POIANA CIREȘULUI, PIATRA-NEAMȚ / 53

Monica Margărit - THE ORIGIN AND SIGNIFICANCE OF PALEOLITHIC ART CONTROVERSIES AROUND SEVERAL HYPOTHESES / 61

Daniela Iamandi - SOME OBSERVATIONS CONCERNING THE RESTORING OF A LARGE HERBIVORE SCAPULA (BOS/BISON?) DISCOVERED IN THE EPİGRAVETTIAN II LAYER FROM POIANA CIREȘULUI, PIATRA NEAMȚ / 67

Denis Câprăoiu - ASPECTS CONCERNING THE ADOPTION INSTITUTION, FROM THE PRIMITIVE SOCIETIES TO THE MIDDLE AGES / 71

Ștefan Schiopu - THE PROBLEM OF THE ROMANIAN MEDIEVAL TOWN’S GENESIS IN HISTORIAN P. P. PANAITESCU’S CONCEPTIONS / 77

Mircea D. Matei, Denis Câprăoiu - QUELQUES ASPECTS CONCERNANT LA CULTURE MATÉRIELLE ET SPIRITUELLE DE LA VALACHIE ET DE LA MOLDAVIE, DANS LA SECONDE MOITIE DU XIV-e SIECLE / 81

Maria Georgescu - LA PERSONNALITE DE MICHEL LE BRAVE ILLUSTREE DANS LA PEINTURE MURALE / 87

Maria Georgescu - THE INTERNATIONAL DIMENSION OF THE ROMANIANS’ ANTI-Ottoman FIGHT BETWEEN THE 15th AND THE 18th CENTURY / 91

Iulian Petrescu - LES RELATIONS DU MÉTROPOLIET VENIAMIN COSTACHI AVEC LE PRINCE RÉGNANT DE LA MOLDAVIE, MIHAIL STURDZA / 107

Vasile Adrian Costin - THE ORTHODOX CHURCH AND THE YIELDING OF BASARABIA AND BUCOVINA / 111

Costin Nicolae - L’ÉGLISE ORTHODOXE DE MARAMUREȘ / 119

Ciprian Șarpe - INTERNAL AND INTERNATIONAL CONDITIONS FOR THE ESTABLISHING OF THE ROMANIAN PATRIARCHATE / 125

Iulian Oncescu - LA FRANCE ET LA QUESTION DU “PRINCE ETRANGER” AU TRONE DE LA ROUMANIE (1866) / 131

Ovidiu Băsceanu - L’INDUSTRIE ROUMAINE ENTRE LA CREATION DE L’ETAT NATIONAL ET LA GUERRE D’INDEPENDANCE (1860-1878) – ORIENTATIONS ET CONCEPTIONS / 149

Iulian Oncescu - LA REOUVERTURE DE LA CRISE ORIENTALE, LA POSITION DE LA PRÉPARATION DIPLOMATIQUE DE LA ROUMANIE POUR LA PROCLAMATION DE L’INDEPENDANCE (1875-1877) / 153
Laura Oncescu - INTERFERENCES CULTURELLES ROUMANO-ITALIENNES AU XIXème SIÈCLE / 159

Oana Gabriela Laculiceanu - MIHAEL STURDZA - ROMANIAN DIPLOMAT IN COPENHAGEN / 169

Radu Bogdan - UN COURT HISTORIQUE DES SERVICES D’EMERGENCE ET LES PRINCIPAUX CAS DE PROTECTION CIVILE AUXQUELS S’EST CONFRONTE LE DEPARTEMENT DE DAMBOVITA, DANS LA PERIODE 1830 - 1916 / 173

Alexandrina Andronescu - LA VIE SOCIALE DES FRANÇAIS AU XX-ÈME SIÈCLE - LA DÉLIQUANCE JUVÉNILE / 181

Alexandrina Andronescu, Felicia Mihaela Iacob - UNE INSTITUTION CULTURELLE, LA MAISON DE CULTURE / 187

Radu Bogdan - L’INSTITUTION DES SERVICES DE PROTECTION DE LA POPULATION CIVILE DANS LE DEPARTEMENT DE DAMBOVITA, DANS LA PERIODE D’ENTRE LES DEUX GUERRES / 191

Daniel Hrenciuc - AN EPISODE FROM THE ROMANIAN-POLISH RELATIONSHIPS BETWEEN THE TWO WORLD WARS: THE ROMANIAN ARMY CONTRIBUTION TO SETTING POCUTIA FREE / 203

Liviu Al. Stan - THE CONSTITUTION OF 1923 AND THE RÉGIME OF RELIGIOUS DENOMINATIONS A NEW HISTORICAL ASSESSMENT / 207

Silviu Miloiu - COMMUNIZATION AND FINLANDIZATION: THE STATUS OF ROMANIA AND FINLAND IN THE AFTERMATH OF WORLD WAR II. A COMPARATIVE STUDY / 215

Emanuel Plopeanu - TOWARD THE FUTURE: UNITED STATES AND SOVIET UNION GEOPOLITICAL CONSIDERATIONS AT THE END OF WORLD WAR TWO (1944-1945) / 229

COMPTE-RENDUS

Iulian Oncescu - SILVIU MILOIU. ROMÂNIA ȘI ȚĂRILE BALTICE ÎN PERIOADA INTERBELICĂ (EDITURA CETATEA DE SCAUN, TÂRGOVIȘTE, 2003) / 237

Ana Dobrianschi - LE MUSÉE LAPIDAIRE DE TIRGOVISTE - SCULPTURES DES XV°-XIX° SIÈCLES / 238
TECHNOLOGICAL AND FUNCTIONAL OBSERVATIONS REGARDING BACKED IMPLEMENTS FROM POIANA CIREȘULUI, PIATRA-NEAMȚ

Loredana Niță

The Paleolithic site of Poiana Cireșului is located on the right bank of Bistrița River, in the eastern part of Romanian Carpathians. The site was excavated in 1963, 1968 (Căptianu, 1969; Scopan, 1976) and 1989 (unpublished). Since 1998, a research group from the „Valahia” University of Târgoviște has resumed the excavations with the support of the National History Museum of Piatra Neamț and the National Museal Complex „Curtea Domneasca” from Târgoviște. To this moment, four cultural levels have been identified, labeled as Epigravettian (the first two) and Gravettian (the next two).

The lower Gravettian level, discovered between 3.60m and 3.95m depth, in the sandy-loess deposit at the bottom of the stratigraphical column, has yielded large combustion areas, some poorly preserved faunal remains, and numerous lithic items. A simple statistical processing of the primary field data highlighted several distinct levels of artifact accumulation (Chart 1). The upper part of this sequence offered an AMS uncalibrated date of 26,070+/−340 BP (Beta 206707), the oldest available date for the Gravettian on the Bistrița Valley so far.

The lithic material consists of 3,225 items, out of which 2.97% are tools (end-scrapers, burins, one sidescraper, retouched blades and bladelets, Gravette points, microgravettes and backed bladelets). The assemblage is largely made of siliceous sandstone (48.77%) and black schist (12.80%); tools, cores and few byproducts typical for the last stages of the debitage sequence mostly represent the Cretaceous flint (17.15%). As the typological spectrum is largely dominated by backed implements, the present study aims at the analysis of these implements from a more complex point of view than the basic typological approach attempted so far.

I. The technological analysis

1.1. General frame of reference

In order to classify a lithic product according to its specific location in thedebitage sequence (chaîne opératoire), each technological stage along with the characteristic products has to be defined (Perlès, 1991; Karlin, Bodu, Pélègrin, 1991; Geneste, 1991).

1 loredana.nita2003@yahoo.com: Universitatea „Valahia” din Târgoviște, Facultatea de Științe Umaniste, Catedra de Istoric, str. Lî. Stancu Ion, nr. 34 - 36, Târgoviște, 130105, Dâmbovița.
1. raw material procurement
 The first stage can be illustrated by blocks of raw material, abandoned for no specific reason, with small changes or none whatsoever (1st technological class). Their occurrence within the lithic assemblage may be reduced by the deployment of this stage outside the site.

2. taking off the cortex and preparing for debitage
 The main products of this stage are the cortical flakes and/or blades (2nd technological class), along with the flakes resulted from the setting up of the flaking surface.

3. the debitage
 This stage begins with the detachment of a crested blade, followed by several non-cortical blades/bladelets (3rd technological class). When the convexities required have worn out, the striking platform or the flaking surfaces are rejuvenated by detaching a new crested blade (néocrète) (3rd A technological class) or a core tablet (3rd B technological class). At the end of the debitage process, the exhausted core may be abandoned, used in obtaining several last flakes, or it may be transformed in a tool (especially if it is a former bladelet core).

4. selecting suitable blanks and transforming them into tools
 The resulting products are typical flakes or burin spalls (4th technological class).

5. rejuvenation, recycling or abandoning exhausted tools (5th technological class).

1.2. Backed implements from Poiana Ciresului (Table 1; Charts 2, 3)

The common raw material used for backed implements is the Cretaceous flint, having as origin the Prut Valley, about 150 km away from the site. Some of the items are also made of black schist, siliceous sandstone or marnilith.

Usually, stage III is a decisive one in producing the backed implements, especially Gravette points, since most of their features depend on the quality of the blanks: a straight back, a straight profile and a narrow cross-section of the blades. Stage IV is responsible for bringing into shape the final product:

- Gravette points are rarely found in one piece and they are 8-10mm wide and 3-4mm thick. The proximal end is often thinned by a flat, inverse retouch (retouche secondaire d’amincissement) (Fig. 1). One of the long edges, usually the right one, is affected by a steep, direct retouch that crosses sometimes the highest ridge on the dorsal surface of the blank (Fig. 2). The distal end is either straightly/obliquely truncated, or pointed, due to the convergence of the retouched edge with the unretouched one, or to the flat, inverse retouch that can affect one or both sides of the tip (Fig. 3). Most of the items are represented by proximal fragments, followed closely by medial and distal fragments.

- backed bladelets (Fig. 4) are straight, thin blanks, (2.3mm thick and 6-8mm wide), with one of the long edges modified by a direct retouch, either steep or grignotante (one that affects an extremely narrow surface of the lateral edge). The proximal and the distal end do not show any kind of specific preparation, like thinning the base or pointing the tip. They are represented by all sorts of fragments, mostly proximal and medial, with triangular or trapezoidal cross-section.

- the microgravettes (Fig. 5, 6) are items shaped almost exactly like the Gravette points, while the difference lies in their dimensions: 2.3mm thick, 5-6mm wide. There are no whole fragments within the inventory, most of the items being represented by proximal and medial fragments.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Types of fragments</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
<td>complete</td>
<td>proximal</td>
</tr>
<tr>
<td>Gravette points</td>
<td>4</td>
<td>11.76</td>
</tr>
<tr>
<td>Backed bladelets</td>
<td>4</td>
<td>13.79</td>
</tr>
<tr>
<td>Microgravettes</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
II. The functional analysis

Determined a specific function for backed implements represented the main goal of several studies (O’Farrell, 1997; Perpère, 2000; Dernalski, 2003, 2004), according to which La Gravette points could have been most frequently used as hafted projectile elements. Their characteristic features, like the standardized morphology, the low weight, the elongated shape, the sharp edge and the pointed tip allow aerodynamically performances and high penetration force.

The experimental approach (Odell, Cowan, 1986; Fischer, 1990; Dockall, 1997) has underlined several patterns of damages that occur when projectile elements are submitted to a violent impact, at a high speed.

Abrasive wear:
- linear polishes/striations, due to the detachment of small flakes or chips from the distal end of the point upon penetration and contact with resistant material such as bone.
- edge-rounding/dulling appear like microscopic smoothing of the proemience and flake scar ridges along the edges and surfaces of a tool. “This damage pattern is to be expected when the point has moved around in the haft during use and bindings and the shaft come in contact with the surface and edges of the tool” (Dockall, 1997, p. 324).

Fractures:
- the step terminating bending fracture, perpendicular to the longitudinal axis of the point (fracture en marche) generates a force wave that will meet the surface opposed to the impact point at an angle of 90°.
- spin-off fractures (length≥2mm) (languette) are identified by a cone initiation from a bending fracture surface that removes portions of the surface of the projectile point. “Bending fractures that result from forces that are perpendicular to the projectile point face and length of the point will initiate spin-offs only on
one surface. If spin-offs are present on both surfaces of the bending fracture, it is possible that they are the result of torsion or movement of the projectile or point fragments in the target” (Dockall, 1997, p. 327).

- the lateral macrofracture (ébrèchure secondaire burinante) causes the detachment of a bladelet, initiated from the tip, affecting one of the lateral edges of the point. This type of fracture can be easily mistaken for the negative of a bladelet resulting from a burin blow.

There are also other factors to be considered when analyzing the extent, position and orientation of different fractures. Among those factors, raw material physical characteristics, the morphology and the orientation of the point, as well as the speed and weight of the projectile are the most significant.

While it has become clear that at least some of the backed implements may have served as projectile points, the debate concerning the hafting system, the specific kind of projectile (spear or arrow), and the propulsion device (speatthrower or bow) still goes on. The traces of use produced by shooting with the bow are more pronounced and extensive, especially in the case of breaks by flexion and burin removals. Also, the throws with the speatthrower cause more breaks than shots with the bow. The frequency of breakage of the flint points might also be related to the point of impact on the animal. In the end, it seems that the simple morphological and morphometric criteria used for the majority of Paleolithic points do not allow a secure discrimination between arrowheads and spear points (Cattelain, 1997).

Other possible functions of the Gravette points might be related to their use as borers (Giourova, Schtchelinski, 1994), or knives (O’Farrell, 1997), in which case the points show specific use-wear, like scarring of the apical end and micropolish on the lateral edges.

So far, the functional analysis of the backed implements from Poiana Ciresului has had as a focus only the macroscopic traces of use, especially the fractures related to their possible use as hafted elements of a throwing device. One medial and two proximal fragments of Gravette points display lateral macrofracture or step terminating bending fractures. One proximal and one medial backed bladelets fragments show step terminating fractures. One proximal microgravette fragment shows lateral macrofracture and one medial microgravette fragment shows step terminating fracture. In the case of the medial fragments, the fractures are situated in the distal third of the pieces. None of the distal fragments of Gravette points, backed bladelets or microgravettes appear to have been originated from an impact-related fracture; this is consistent with the general assertion that proximal and medial fragments are most likely to return to the site with the hafts, and the distal fragments usually get lost while hunting/processing the prey (Geneste, Plisson, 1989). Most of the rest of the items display undiagnostic types of fractures, that could be linked to a variety of other factors, such as trampling, or accidents happened during manufacture. Post-depositional breakage, however, can be ruled out, since the ridges on the dorsal side of the items appear fresh and not slightly smoothed.

III. Discussion

One major issue of interest in defining the lithic assemblage from the lower Gravettian level seems to be the rarity of tool types such as end-scrapers (2 items) and burins (3 items), alongside the numerous backed implements and, possibly, fragmented distal points². A toolkit formed mainly by hypothetical projectile elements might be seen as proof of a specialized occupational level. At this point, only 6 backed implements, out of a total of 70, seem to have been used in hunting purposes, which cannot support an explicit definition of this occupational level as a hunting camp. In turn, a future microscopic identification of use-related traces could reveal a whole new set of tasks performed with the support of (some) backed implements, like cutting or piercing. Maybe an accurate microwear study could also provide interesting information about the functions of the unretouched fragmented blades, with only slight deterioration of the long sides.

Another point of interest could be the possible connection of the Gravettian from Poiana Ciresului with other well-dated analogous cultural layers, like those on the Pruț Valley, given the AMS dating of 26,000 BP available for the upper part of this sequence and the significant use of Pruț flint as raw material. Establishing such a connection would imply the development of numerous levels of analysis, within a particularly multipart approach, whose basic data is still unavailable to us. Some preliminary observations on the Gravette points from Mitoc-Malu Galben highlighted few distinctions between those and the Gravette points from Poiana Ciresului, from which we will only mention the most obvious. The Gravette points from Mitoc are shaped on large blades, mostly over 10 mm wide and up to 80 mm long, while at Poiana Ciresului the same items do not exceed 8-10 mm in width, and approximately 55 mm in length.

There are various issues to be taken into account when trying to identify technologic similarities between two or more lithic assemblages. Producing diverse types of blanks, in order to obtain the same final product could be due to different technological options, related to access to good quality raw material, type and intensity of the rejuvenation process, or traditions, and also different functions intended for the final product, related to type of hafting, or type of tasks performed. Hopefully, future developments of the lithic analysis will begin to clarify this problem.
NOTES:

1 The measurement of the backed implements has recorded only the maximum values of width and thickness. Also, the items listed in Table 1 do not include heavily fragmented or unfinished pieces (ébuches).

2 There are still some doubts regarding the identification of four items as distal fragments of the so-called pointes à face plane.

3 The author would like to thank Professor Vasile Chirica, who generously allowed the comparison with the Gravettian lithic collection from Mitoc Malu Galben.

REFERENCES:

O’Farrell, M., (1997) – Approche technologique et fonctionnelle des pointes de La Gravette: une analyse archéologique et expérimentale appliquée à la collection de Corbierac (Dordogne, fouille de F. Bordes), Diplôme d’Études Approfondies en Anthropologie, Université de Bordeaux I.

Fig. 1 - proximal end with flat, inverse retouch

Fig. 2 - Direct, steep retouch of the backed surface

Fig. 3 A - Pointed distal end

Fig. 3B - Truncated distal end
Fig. 4 - Backed bladelet (dorsal and ventral side)

Fig. 5 - Microgravette (dorsal and ventral side) with pointed distal end

Fig. 6 - Microgravette (dorsal and ventral side) with flat, inverse retouch on the proximal end